
Lidar Toolbox™
Getting Started Guide

R2023a



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Lidar Toolbox™ Getting Started Guide
© COPYRIGHT 2020–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2020 Online only New for Version 1.0 (R2020b)
March 2021 Online only Revised for Version 1.1 (R2021a)
September 2021 Online only Revised for Version 2.0 (R2021b)
March 2022 Online only Revised for Version 2.1 (R2022a)
September 2022 Online only Revised for Version 2.2 (R2022b)
March 2023 Online only Revised for Version 2.3 (R2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents


Introduction to Lidar Toolbox
1

Lidar Toolbox Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Concept Pages
2

Introduction to Lidar Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
What is Lidar? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
What is a Point Cloud? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Types of Lidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Advantages of Lidar Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Lidar Processing Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Applications of Lidar Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

Coordinate Systems in Lidar Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
World Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Sensor Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Coordinate System Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

What Is Lidar-Camera Calibration? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Extrinsic Calibration of Lidar and Camera . . . . . . . . . . . . . . . . . . . . . . . . 2-9

Calibration Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Checkerboard Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Guidelines for Capturing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14

What are Organized and Unorganized Point Clouds? . . . . . . . . . . . . . . . . 2-16
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Unorganized to Organized Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16

Parameter Tuning for Ground Segmentation . . . . . . . . . . . . . . . . . . . . . . 2-19

Get Started with Lidar Camera Calibrator . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Load Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Feature Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
Export Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27
Keyboard Shortcuts and Mouse Actions . . . . . . . . . . . . . . . . . . . . . . . . . 2-27
Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29

Get Started with Lidar Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31

iii

Contents



Getting Started with PointPillars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33
PointPillars Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33
Create PointPillars Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34
Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34
Train PointPillars Object Detector and Perform Object Detection . . . . . . 2-34
Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34

Getting Started with PointNet++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36
PointNet++ Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36
Create PointNet++ Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37
Train PointNet++ Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37
Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37

Object Detection in Point Clouds Using Deep Learning . . . . . . . . . . . . . . 2-38
Create Training Data for Object Detection . . . . . . . . . . . . . . . . . . . . . . . 2-38
Create Object Detection Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39
Train Object Detector Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39
Detect Objects in Point Clouds Using Deep Learning Detectors and

Pretrained Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39
Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-40

Semantic Segmentation in Point Clouds Using Deep Learning . . . . . . . . 2-41
Deep Learning-Based Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41
Create Training Data for Semantic Segmentation . . . . . . . . . . . . . . . . . . 2-42
Create Semantic Segmentation Network . . . . . . . . . . . . . . . . . . . . . . . . 2-43
Train Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43
Segment Point Clouds and Evaluate Results . . . . . . . . . . . . . . . . . . . . . . 2-43
Use Pretrained Segmentation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43
Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44

Deep Learning with Point Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46
Import Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46
Augment and Preprocess Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46
Create Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-47
Train Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-47
Test and Evaluate Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-47

iv Contents



Introduction to Lidar Toolbox

1



Lidar Toolbox Product Description
Design, analyze, and test lidar processing systems

Lidar Toolbox™ provides algorithms, functions, and apps for designing, analyzing, and testing lidar
processing systems. You can perform object detection and tracking, semantic segmentation, shape
fitting, lidar registration, and obstacle detection. The toolbox provides workflows and an app for lidar-
camera cross-calibration.

The toolbox lets you stream data from Velodyne® lidars and read data recorded by Velodyne and IBEO
lidar sensors. The Lidar Viewer App enables interactive visualization and analysis of lidar point
clouds. You can train detection, semantic segmentation, and classification models using machine
learning and deep learning algorithms such as PointPillars, SqueezeSegV2, and PointNet++. The
Lidar Labeler App supports manual and semi-automated labeling of lidar point clouds for training
deep learning and machine learning models.

Lidar Toolbox provides lidar processing reference examples for perception and navigation workflows.
Most toolbox algorithms support C/C++ code generation for integrating with existing code, desktop
prototyping, and deployment.

1 Introduction to Lidar Toolbox
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Introduction to Lidar Processing

What is Lidar?
Lidar, which stands for Light Detection and Ranging, is a method of 3-D laser scanning.

Lidar sensors provide 3-D structural information about an environment. Advanced driving assistance
systems (ADAS), robots, and unmanned aerial vehicles (UAVs) employ lidar sensors for accurate 3-D
perception, navigation, and mapping.

Lidar is an active remote sensing system that uses laser light to measure the distance of the sensor
from objects in a scene. A lidar sensor emits laser pulses that reflect off of surrounding objects. The
sensor then captures this reflected light and uses the time-of-flight principle to measure its distance
from objects, enabling it to perceive the structure of its surroundings.

A lidar sensor stores these reflected laser pulses, or laser returns, as a collection of points. This
collection of points is called a point cloud.

What is a Point Cloud?
A point cloud is a collection of 3-D points in space. Just as an image is the output of a camera, a point
cloud is the output of a lidar sensor.

A lidar sensor captures attributes such as the location in xyz-coordinates, the intensity of the laser
light, and the surface normal at each point of a point cloud. With this information a point cloud
generates a 3-D map of an environment. You can store and process the information from a point cloud
in MATLAB® by using a pointCloud object.

2 Concept Pages
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Point clouds can be either unorganized or organized. In an unorganized point cloud, the points are
stored as a single stream of 3-D coordinates. In an organized point cloud, the points are arranged into
rows and columns based on spatial relation between them. For more information about organized and
unorganized point clouds, see “What are Organized and Unorganized Point Clouds?”

Types of Lidar
You can broadly divide the various types of lidar sensors based on whether they are for airborne or
terrestrial application.

Airborne or Aerial Lidar

Airborne lidar sensors are those attached to helicopters, aircrafts, or UAVs. They consist of
topographic and bathymetric sensors.

• Topographic sensors help in monitoring and mapping the topography of a region. Applications
include urban planning, landscape ecology, forest planning and mapping.

• Bathymetric sensors estimate the depth of water bodies. These sensors have an additional green
laser that travels through a water column. Applications include coastline management, and
oceanography.

 Introduction to Lidar Processing

2-3



Terrestrial Lidar

Terrestrial lidar sensors scan the surface of the Earth or the immediate surroundings of the sensor on
land. These sensors can be static or mobile.

• Static sensors collect point clouds from a fixed location. Applications such as mining, archaeology,
smartphones, and architecture use static sensors.

• Mobile sensors are most commonly used in autonomous driving systems, and are mounted on
vehicles. Other applications include robotics, transport planning, and mapping.

Advantages of Lidar Technology
Lidar sensors are useful when you need to take accurate measurements at longer distances and
higher resolutions than is possible with radar sensors, or in environmental or lighting conditions that
would negatively affect a camera. Lidar scans are also natively 3-D, and do not require additional
software to add depth.

You can use lidar sensors to detect small details, scan dense environments, and collect data at night
or in inclement weather, all with high speed.

2 Concept Pages
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Lidar Processing Overview
I/O and Supported Hardware

Because the wide variety of lidar sensors available from companies such as Velodyne, Ouster®,
Hesai®, and Ibeo® use a variety of formats for point cloud data, Lidar Toolbox provides tools to import
and export point clouds using various file formats. Lidar Toolbox currently supports reading data
from the PLY, PCAP, PCD, LAS, LAZ, and Ibeo data container (IDC) sensor formats. You can also write
point cloud data to the PLY, PCD, and LAS formats. For more information on file input and output, see
“I/O”. You can also stream live data from Velodyne and Ouster sensors. For more details on streaming
live data, see “Lidar Toolbox Supported Hardware”.

Preprocessing

Lidar Toolbox enables you perform preprocessing operations such as downsampling, denoising, and
cropping on your point cloud data. To learn more about visualizing and preprocessing point clouds,
see “Get Started with Lidar Viewer”.

Labeling, Segmentation and Detection

Labeling objects in a point cloud helps you organize and analyze ground truth data for object
detection and segmentation. To learn more about lidar labeling, see “Get Started with the Lidar
Labeler”.

Many applications for lidar processing rely on deep learning algorithms to segment, detect, track,
and analyze objects of interest in a point cloud. To learn more about point cloud processing using
deep learning, see “Getting Started with Point Clouds Using Deep Learning”.

Calibration and Sensor Fusion

Most modern sensing systems use sensor suites that contain multiple sensors. To obtain meaningful
information from multiple sensors, you must first calibrate these sensors. Calibration is the process of
aligning the coordinate systems of multiple sensors through rotational and translational
transformations. For more information about coordinate systems, see “Coordinate Systems in Lidar
Toolbox”.

Lidar Toolbox provides various tools for calibration and sensor fusion. Many applications involve
capturing the same scene using both a lidar sensor and a camera. To construct an accurate 3-D
scene, you must fuse the data from these sensors by first calibrating them to one another. For more
information on lidar-camera fusion, see “What Is Lidar-Camera Calibration?” and “Get Started with
Lidar Camera Calibrator”.

Navigation and Mapping

Mapping is the process of building a map of the environment around an autonomous system. You can
use tools in Lidar Toolbox to perform simultaneous localization and mapping (SLAM), which is the
process of calculating the position and orientation of the system, with respect to its surroundings,
while simultaneously mapping its environment. For more information, see “Implement Point Cloud
SLAM in MATLAB”.

Applications of Lidar Technology
Lidar Toolbox provides many tools for typical workflows in different applications of lidar processing.

 Introduction to Lidar Processing
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• Autonomous Driving Assistance Systems — You can detect cars, trucks, and other objects
using the lidar sensors mounted on moving vehicles. You can semantically segment these point
clouds to detect and track objects as they move. To learn more about vehicle detection and
tracking using Lidar Toolbox, see the “Detect, Classify, and Track Vehicles Using Lidar” example.

• Remote Sensing — Airborne lidar sensors can generate point clouds that provide information
about the vegetation cover in an area. To learn more about remote sensing using Lidar Toolbox,
see the “Extract Forest Metrics and Individual Tree Attributes from Aerial Lidar Data” example.

• Navigation and Mapping — You can build a map using the lidar data generated from a vehicle-
mounted lidar sensor. You can use these maps for localization and navigation. To learn more about
map building, see the “Feature-Based Map Building from Lidar Data” example.

See Also

More About
• “What are Organized and Unorganized Point Clouds?”
• “Getting Started with Point Clouds Using Deep Learning”
• “Coordinate Systems in Lidar Toolbox”
• “What Is Lidar-Camera Calibration?”
• “Implement Point Cloud SLAM in MATLAB”

2 Concept Pages
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Coordinate Systems in Lidar Toolbox
A lidar sensor uses laser light to construct a 3-D scan of its environment. By emitting laser pulses into
the surrounding environment and capturing the reflected pulses, the sensor can use the time-of-flight
principle to measure its distance from objects in the environment. The sensor stores this information
as a point cloud, which is a collection of 3-D points in space.

Lidar sensors record point cloud data with respect to either a local coordinate system, such as the
coordinate system of the sensor or the ego vehicle, or in the world coordinate system.

World Coordinate System
The world coordinate system is a fixed universal frame of reference for all the vehicles, sensors, and
objects in a scene. In a multisensor system, each sensor captures data in its own coordinate system.
You can use the world coordinate system as a reference to transform data from different sensors into
a single coordinate system.

Lidar Toolbox uses the right-handed Cartesian world coordinate system defined in ISO 8855, where
the x-axis is positive in the direction of ego vehicle movement, the y-axis is positive to the left with
regard to ego vehicle movement, and the z-axis is positive going up from the ground.

Sensor Coordinate System
A sensor coordinate system is one local to a specific sensor, such as a lidar sensor or a camera, with
its origin located at the center of the sensor.

A lidar sensor typically measures the distance of objects from the sensor and collects the information
as points. Each point has spherical coordinates of the form (r, Θ, Φ), which you can use to calculate
the xyz-coordinates of a point.

• r is the distance of the point from the origin
• Φ is the azimuth angle in the XY-plane measured from the positive x-axis
• Θ is the elevation angle in the YZ-plane measured from positive z-axis

The mounting position and orientation of a lidar sensor can vary depending on its intended
application.

Horizontal mounting used on ground vehicles for autonomous driving applications, enables the sensor
to scan and detect objects and terrain in its immediate vicinity for applications such as obstacle
avoidance.

Vertical mounting which is used on aerial vehicles, enables the sensor to scan large landscapes such
as forests, plains, and bodies of water. Vertical mounting requires these additional parameters to
define the sensor orientation.

• Roll — Angle of rotation around the front-to-back axis, which is the x-axis of the sensor coordinate
system.

• Pitch — Angle of rotation around the side-to-side axis, which is the y-axis of the sensor coordinate
system.

 Coordinate Systems in Lidar Toolbox
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• Yaw — Angle of rotation around the vertical axis, which is the z-axis of the sensor coordinate
system.

Coordinate System Transformation
Applications such as autonomous driving, mining, and underwater navigation use multisensor
systems for a more complete understanding of the surrounding environment. Because each sensor
captures data in its respective coordinate system, to fuse data from the different sensors in such a
setup, you must define a reference coordinate frame and transform the data from all the sensors into
reference frame coordinates.

For example, you can select the coordinate system of a lidar sensor as your reference frame. To
create reference frame coordinates from your lidar sensor data, you must transform that data by
multiplying it with the extrinsic parameters of the lidar sensor.

To apply transformation, you must multiply your data with the extrinsic parameters of the lidar
sensor. The extrinsic parameter matrix consists of the translation vector and rotation matrix. The
translation vector translates the origin of your selected reference frame to the origin of the world
frame, and the rotation matrix rotates the axes to the correct orientation.

Lidar sensors and cameras are often used together to generate accurate 3-D scans of a scene. For
more information about lidar-camera data fusion, see “What Is Lidar-Camera Calibration?”

See Also

More About
• “Coordinate Systems”
• “Image Coordinate Systems”

2 Concept Pages
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What Is Lidar-Camera Calibration?
Lidar-camera calibration establishes correspondences between 3-D lidar points and 2-D camera data
to fuse the lidar and camera outputs together.

Lidar sensors and cameras are widely used together for 3-D scene reconstruction in applications such
as autonomous driving, robotics, and navigation. While a lidar sensor captures the 3-D structural
information of an environment, a camera captures the color, texture, and appearance information.
The lidar sensor and camera each capture data with respect to their own coordinate system.

Lidar-camera calibration consists of converting the data from a lidar sensor and a camera into the
same coordinate system. This enables you to fuse the data from both sensors and accurately identify
objects in a scene. This figure shows the fused data.

Lidar-camera calibration consists of intrinsic calibration and extrinsic calibration.

• Intrinsic calibration — Estimate the internal parameters of the lidar sensor and camera.

• Manufacturers calibrate the intrinsic parameters of their lidar sensors in advance.
• You can use the estimateCameraParameters function to estimate the intrinsic parameters

of the camera, such as focal length, lens distortion, and skew. For more information, see the
“Single Camera Calibration” example.

• You can also interactively estimate camera parameters using the Camera Calibrator app.
• Extrinsic calibration — Estimate the external parameters of the lidar sensor and camera, such as

location, orientation, to establish relative rotation and translation between the sensors.

Extrinsic Calibration of Lidar and Camera
The extrinsic calibration of a lidar sensor and camera estimates a rigid transformation between them
that establishes a geometric relationship between their coordinate systems. This process uses
standard calibration objects, such as planar boards with checkerboard patterns.

 What Is Lidar-Camera Calibration?
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This diagram shows the extrinsic calibration process for a lidar sensor and camera using a
checkerboard.

The programmatic workflow for extrinsic calibration consists of these steps. Alternatively, you can
use the Lidar Camera Calibrator app to interactively perform lidar-camera calibration.

1 Extract the 3-D information of the checkerboard from both the camera and lidar sensor.

a To extract the 3-D checkerboard corners from the camera data, in world coordinates, use the
estimateCheckerboardCorners3d function.

b To extract the checkerboard plane from the lidar point cloud data, use the
detectRectangularPlanePoints function.

2 Use the checkerboard corners and planes to obtain the rigid transformation matrix, which
consists of the rotation R and translation t. You can estimate the rigid transformation matrix by
using the estimateLidarCameraTransform function. The function returns the transformation
as a rigidtform3d object.

You can use the transformation matrix to:

2 Concept Pages
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• Evaluate the accuracy of your calibration by calculating the error. You can do so either
programmatically, using estimateLidarCameraTransform, or interactively, using the Lidar
Camera Calibrator app.

• Project lidar points onto an image by using the projectLidarPointsOnImage function, as
shown in this figure.

• Fuse the lidar and camera outputs by using the fuseCameraToLidar function.
• Estimate the 3-D bounding boxes in a point cloud based on the 2-D bounding boxes in the

corresponding image. For more information, see “Detect Vehicles in Lidar Using Image Labels”.

References
[1] Zhou, Lipu, Zimo Li, and Michael Kaess. “Automatic Extrinsic Calibration of a Camera and a 3D

LiDAR Using Line and Plane Correspondences.” In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 5562–69. Madrid: IEEE, 2018. https://doi.org/
10.1109/IROS.2018.8593660.
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See Also
estimateLidarCameraTransform | estimateCheckerboardCorners3d |
detectRectangularPlanePoints | projectLidarPointsOnImage | fuseCameraToLidar |
bboxCameraToLidar

Related Examples
• “Lidar and Camera Calibration”
• “Detect Vehicles in Lidar Using Image Labels”

More About
• “Calibration Guidelines”
• “Coordinate Systems in Lidar Toolbox”
• “Get Started with Lidar Camera Calibrator”
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Calibration Guidelines
These guidelines help you achieve accurate results for lidar-camera calibration. For more information
on lidar-camera calibration, see “What Is Lidar-Camera Calibration?”

Checkerboard Guidelines
• When using the checkerboard function to create a checkerboard image:

• Create a rectangular checkerboard that contains an even number of squares along one edge
and an odd number of squares along the adjacent edge. This ensures a pattern with two black
corners and two white corners. Patterns in which all corners are the same color can produce
unexpected results for camera extrinsic parameters.

• You can use the length differences of sides and the different corner colors to determine the
orientation and the origin of the checkerboard. The Lidar Camera Calibrator app assigns the
x-direction to the longer side of the checkerboard.

• Print the checkerboard from end-to-end on a foam board, as shown in this figure, to avoid any
measurement errors.

• Accurately measure any padding you add along each side of the checkerboard. Padding values
must be specified as a vector to the Lidar Camera Calibrator app or

 Calibration Guidelines
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estimateCheckerboardCorners3d function when you estimate the checkerboard corners. This
figure shows the order of elements of the padding vector, clockwise from the left side of the
checkerboard.

Checkerboard Padding

Guidelines for Capturing Data
• Capture data from both sensors simultaneously with no motion blur effects. Motion blur can

degrade the accuracy of the calibration. If you are working with a video recording, carefully
capture the point clouds corresponding to the respective image frames.

• The checkerboard should point towards the front axes of the camera (z-axis) and lidar sensor (x-
axis).

• Hold the checkerboard target with your arms fully extended, rather than close to your body.
Otherwise, parts of your body may appear to be planar with the target. This can cause inaccurate
checkerboard detection.

• For sparse lidar sensors, hold the target from behind, rather than on the edges, because the
detectRectangularPlanePoints function searches for the checkerboard plane in each cluster
of the input point cloud. To further reduce false detections, specify the approximate checkerboard
position using the “ROI” name-value argument.

• Be aware of the viewing angle or the field of view of the lidar sensor. Do not place the board in the
blindspots of the sensor.

• Pay close attention to the distance between the sensor and the checkerboard. Low resolution lidar
sensors, such as the Velodyne VLP-16, can have trouble accurately detecting distant
checkerboards.

• Remove other items from the checkerboard plane to avoid clustering them with the checkerboard
data.

• For high-resolution lidar sensors like the HDL-64 and Ouster OS1-64, you can hold the
checkerboard horizontally or vertically while capturing data. However, for best results, tilt the
checkerboard to a 45-degree angle while capturing data.

• This figure shows different ways to hold the checkerboard while capturing data. Capture at least
10 frames for accurate calibration.

• You must save point cloud data in the PCD or PLY format.
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• Image files can be in any standard image format supported by MATLAB.

For more details on the calibration workflow, see the “Lidar and Camera Calibration” example.

See Also
Lidar Camera Calibrator | estimateLidarCameraTransform |
estimateCheckerboardCorners3d | detectRectangularPlanePoints |
projectLidarPointsOnImage | fuseCameraToLidar

Related Examples
• “Lidar and Camera Calibration”
• “Detect Vehicles in Lidar Using Image Labels”

More About
• “What Is Lidar-Camera Calibration?”
• “Get Started with Lidar Camera Calibrator”
• “Coordinate Systems in Lidar Toolbox”
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What are Organized and Unorganized Point Clouds?

Introduction
There are two types of point clouds: organized and unorganized. These describe point cloud data
stored in a structured manner or in an arbitrary fashion, respectively. An organized point cloud
resembles a 2-D matrix, with its data divided into rows and columns. The data is divided according to
the spatial relationships between the points. As a result, the memory layout of an organized point
cloud relates to the spatial layout represented by the xyz-coordinates of its points. In contrast,
unorganized point clouds consist of a single stream of 3-D coordinates, each coordinate representing
a single point. You can also differentiate these point clouds based on the shape of their data.
Organized point clouds are M-by-N-by-3 arrays, with the three channels representing the x-, y-, and z-
coordinates of the points. Unorganized point clouds are M-by-3 matrices, where M is the total
number of points in the point cloud.

Unorganized to Organized Conversion
Most deep learning segmentation networks, such as SqueezeSegv1/v2, RangeNet++, and SalsaNext,
process only organized point clouds. In addition, organized point clouds are used in ground plane
extraction and key point detection methods. This makes organized point cloud conversion an
important preprocessing step for many Lidar Toolbox workflows.

You can convert unorganized point clouds to organized point clouds by using the pcorganize
function. The underlying algorithm uses spherical projection to represent the 3-D point cloud data in
a 2-D (organized) form. It requires certain corresponding lidar sensor parameters, specified using the
lidarParameters object, in order to convert the data.

Lidar Sensor Parameters

The sensor parameters required for conversion differ based on whether the lidar sensor has a
uniform beam or a gradient beam configuration. A lidar sensor is created by stacking laser scanners
vertically. Each laser scanner releases a laser pulse and rotates to capture a 3-D point cloud.

When the laser scanners are stacked with equal spacing, the lidar sensor has a uniform beam (laser
scanner) configuration.
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To convert unorganized point clouds captured using a lidar sensor with a uniform beam configuration,
you must specify these parameters from the sensor handbook:

• Vertical resolution — Number of channels in the vertical direction, consisting of the number of
lasers. Typical values include 32 and 64.

• Horizontal resolution — Number of channels in the horizontal direction. Typical values include
512 and 1024.

• Vertical field of view — Vertical field of view, in degrees. The sensor in the preceding picture has a
vertical field of view of 45 degrees.

For an example, see “Create a Lidar Parameters Object”.

When the beams at the horizon are tightly packed, and those toward the top and bottom of the sensor
field of view are more spaced out, the lidar sensor has a gradient beam configuration.

To convert unorganized point clouds captured using a lidar sensor with a gradient beam
configuration, you must specify these parameters from the sensor handbook:

• Horizontal resolution — Number of channels in the horizontal direction. Typical values include
512 and 1024.

• Vertical beam angles — Angular position of each vertical channel, in degrees.

For an example, see “Create Lidar Parameters Object for Gradient Lidar Sensor”.

Supported Sensors

The lidarParameters object can automatically load the sensor parameters for some popular lidar
sensors. These sensors are supported:

Sensor Name Input
Velodyne HDL-64E 'HDL64E'
Velodyne HDL-32E 'HDL32E'
Velodyne VLP16 'VLP16'
Velodyne VLP32C 'VLP32C'
Velodyne VLP128 'VLS128'
Velodyne Puck LITE 'PuckLITE'
Velodyne Puck Hi-Res 'PuckHiRes'
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Sensor Name Input
Ouster OS0-32 OS0-32
Ouster OS0-64 OS0-64
Ouster OS0-128 OS0-128
Ouster OS1Gen1-32 OS1Gen1-32
Ouster OS1Gen1-64 OS1Gen1-64
Ouster OS1Gen1-128 OS1Gen1-128
Ouster OS1Gen2-32 OS1Gen2-32
Ouster OS1Gen2-64 OS1Gen2-64
Ouster OS1Gen2-128 OS1Gen2-128
Ouster OS2-32 OS2-32
Ouster OS2-64 OS2-64
Ouster OS2-128 OS2-128

See Also
pcorganize | lidarParameters

Related Examples
• “Unorganized to Organized Conversion of Point Clouds Using Spherical Projection”
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Parameter Tuning for Ground Segmentation
The segmentGroundSMRF function segments ground points in a point cloud. The function
parameters need to be tuned in order to get accurate results based on the data. This page will explain
the significance of the function parameters and how it can be tuned for aerial and driving scenario
point clouds. By default, the function is tuned for aerial point cloud data.

The meaning of each parameter and the underlying are explained in the segmentGroundSMRF
documentation. The effect of each parameter on the data is explained in the following list:

 Parameter Tuning for Ground Segmentation
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Get Started with Lidar Camera Calibrator
The Lidar Camera Calibrator app enables you to interactively estimate the rigid transformation
between a lidar sensor and a camera.

This topic shows you the Lidar Camera Calibrator app workflow, as well as features you can use, to
analyze and improve your results. The first, and most important, part of the calibration process is to
obtain accurate and useful data. For guidelines and tips for capturing data, see “Calibration
Guidelines”.

Load Data
To open the Lidar Camera Calibrator app, at the MATLAB command prompt, enter this command.

lidarCameraCalibrator

Alternatively, you can open the app from the Apps tab, under Image Processing and Computer
Vision.

The app opens to an empty session. The app reads point cloud data in the PLY and point cloud data
(PCD) formats, and images in any format supported by imformats. If your data is stored in a rosbag
file, see the “Read Lidar and Camera Data from Rosbag File” tutorial to convert it accordingly.

Load the calibration data into the app.

1 On the app toolstrip, select Import > Import Data, opening the Import Data dialog box.
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2 In the Folder for images box, enter the path to the folder that contains the image files you want
to load. Alternatively, select the Browse button next to the box, navigate to the folder containing
the images,and click Select Folder.

3 In the Folder for point clouds box, enter the path to the folder that contains the sequence of
PCD or PLY files you want to load. Alternatively, select the Browse button next to the box,
navigate to the folder containing the files,and click Select Folder.

4 In the Checkerboard Settings section, enter the calibration checkerboard parameters. Specify
the size for each checkerboard square in the Square Size box, and select the units of
measurement from the list next to the box.

5 In the Padding box, enter the padding values for the checkerboard. For more information on
padding, see “Checkerboard Padding”. Click OK to import your data.

To add more images and point clouds to the session at any point in the session, select Import > Add
Data to Session.

Feature Detection
The app loads the image and point cloud data and performs an automatic feature detection pass on
the data using the specified checkerboard parameters. It detects the checkerboard corners from the
image data and the checkerboard plane from the point cloud data. The app interface displays the
detection progression and results.

The Accepted Data pane displays the image and point cloud pairs that the app accepts for
calibration. The app accepts an image or point cloud if it detects checkerboard features in both of
them. The app uses file names to pair the image and point cloud data. It compares images to the
corresponding point clouds with the same file name. The Rejected Data pane displays the data pairs
for which the app could not detect features in the image, the point cloud, or both. You can use “Select
Region of Interest” or “Select Checkerboard Region” on the Rejected Data to obtain better
detections.
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The app displays the data in the visualization area as separate panes for image and point cloud data.
Each pane has tabs with the image or point cloud data file name. You can select a data pair from the
Accepted Data or Rejected Data pane to visualize it in this area. When you select a data pair, the
app highlights it in blue. To delete the selected data pair, press Backspace (PC) or delete (Mac). For
more keyboard shortcuts for the data browser, see “Data Browser”.

The image display pane shows the image from the selected pair and the detected checkerboard
corners. To detect the checkerboard corners, the app uses the estimateCheckerboardCorners3d
function. The app computes camera intrinsics to perform feature detection. If you have camera
intrinsic values, you can load them into the app, in the Camera Intrinsics section, by selecting Use
Fixed Intrinsics. In the dialog box that opens, browse to your camera intrinsics file and load it into
the app. After loading, in the Feature Detection section, select Detect to detect features with the
new intrinsics.
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The point cloud display pane shows the point cloud from the selected pair, with the detected
checkerboard plane rendered in white. To detect the plane, the app uses the
detectRectangularPlanePoints function.

Use the various display options for point clouds in the app to improve visualization and detection.

Select Region of Interest

Select Snap To ROI to visualize a particular region of interest (ROI) in the point cloud. The app sets
a default value for the ROI, but you can set a custom ROI using the Edit ROI tool. This tool enables
you to manually pinpoint the region of the point cloud. Specifying an ROI to the region where the
checkerboard is present can reduce data rejections and improve performance by focusing feature
detection on a specific region.

 Get Started with Lidar Camera Calibrator

2-23



1 Select Edit ROI, which opens the Edit ROI tab. The tab contains the same Accepted Data and
Rejected Data panes as the Calibration tab, but the point cloud display pane takes up the rest
of the window.

2 Select a data pair, which the app highlights in blue. You can select a rejected data pair to tune
the ROI.

3 Clear the Snap To ROI button to view the whole point cloud.
4 The ROI is highlighted in yellow. Point to the ROI, and the cursor turns into a hand symbol.
5 Click on any side of the ROI and drag it to toggle the size. You can select Snap To ROI to view

the contents of the ROI and change the size accordingly.
6 Select Apply to save your changes or Cancel to discard them.

Because the app applies the new ROI on all the point cloud frames, you must define an ROI that
covers all areas in which you placed the checkerboard. Clear the Snap To ROI button to view the
whole point cloud and select the Hide ROI Cuboid to remove the ROI highlighting. Select Detect to
detect features in the selected ROI. Alternatively, you can use keyboard shortcuts to perform these
tasks. For more information, see “Edit ROI”.

Select Checkerboard Region

To further tune the detections, you can use the Select Checkerboard feature to manually select
checkerboard points in any point cloud frame.
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1 On the app toolstrip, select Select Checkerboard. The app opens the Select Checkerboard
tab. This tab contains the same Accepted Data and Rejected Data panes as the Calibration
tab, but the point cloud display pane takes up the rest of the window.

2 Select a data pair. The app highlights it in blue. You can select a rejected data pair and find the
checkerboard in the point cloud.

3 Use the zoom and rotate options in the axes toolbar of the point cloud display to locate the
checkerboard.

4 Select Select Checkerboard. The cursor changes into a crosshair.
5 Click and drag the cursor over the checkerboard. A selection rectangle appears, with the points

inside it highlighted in red. Alternatively, you can also select Brush/Select Data on the axes
toolbar.

6 After selecting the points, rotate the point cloud to check whether any background points have
been selected. If your selection contains unwanted points, select Clear Selection to start over.

7 Select Apply to save the selected points, or Cancel to discard them.

This checkerboard selection applies only to the current point cloud. Select Detect to detect features
using the manually selected checkerboard.

Feature Detection Settings

The app provides these feature detection settings in which you can tune parameters.
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• Remove Ground — Remove ground points from the point cloud. The app uses the pcfitplane
function to estimate the ground plane. The Remove Ground feature is enabled by default. Select
Remove Ground to clear it.

• Cluster Threshold — Clustering threshold for two adjacent points in the point cloud, specified in
meters. The clustering process is based on the Euclidean distance between adjacent points. If the
distance between two adjacent points is less than the clustering threshold, both points belong to
the same cluster. Low-resolution lidar sensors require a higher Cluster Threshold, while high-
resolution lidar sensors benefit from a lower Cluster Threshold.

• Dimension Tolerance — Tolerance for uncertainty in the rectangular plane dimensions, specified
in the range [0,1]. A higher Dimension Tolerance indicates a more tolerant range for the
rectangular plane dimensions.

Select Detect to detect features using the new parameters.

Calibration
When you are satisfied with the detection results, select Calibrate button to calibrate the sensors. If
you have an estimated transformation matrix, select Initial Transform to load the transformation
matrix from a file or the workspace. The app assumes the rotation angle between the lidar sensor and
the camera is in the range [–45 45 ], in degrees, along each axis. For a rotation angle outside this
range, use Initial Transform to specify an initial transformation to improve calibration accuracy.

After calibration, the app interface displays the image with the checkerboard points from the point
cloud projected onto it. The app uses the projectLidarPointsOnImage function to project the
lidar points onto the image. The color information of the images is fused with the point cloud data
using the fuseCameraToLidar function.

The app also provides the inaccuracy metrics for the transformation matrix using error plots. The
plots specify these errors in each data pair:
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• Translation Errors — The difference between the centroid coordinates of the checkerboard
planes in the point clouds and those in the corresponding images. The app returns the error
values in meters.

• Rotation Errors — The difference between the normal angles defined by the checkerboard
planes in the point clouds and those in the corresponding images. The app estimates the plane in
the image using the checkerboard corner coordinates. The app returns the error values in
degrees.

• Reprojection Error— The difference between the projected (transformed) centroid coordinates
of the checkerboard planes from the point clouds and those in the corresponding images. The app
returns the error values in pixels.

When you select a data pair in the data browser, the corresponding bars in the error plot are
highlighted in dark blue. You can tune the calibration results by removing outliers. Drag the red line
on each plot vertically to set error limits. The app selects all the data pairs with an error value
greater than error limit as outliers, and highlights the error bars and their corresponding data pairs
in the data browser in blue. Right-click any of the selected data pairs on the data browser and select
Remove and Recalibrate to delete the outliers and recalibrate the sensors. Deleting outliers can
improve calibration accuracy. For a list of keyboard shortcuts to use with the error plots, see “Error
Plots”.

Export Results

You can export the transformation matrix and error metrics, as variables, into the workspace or a
MAT-file. You can generate a MATLAB script of the complete app workflow to use in your projects.

Keyboard Shortcuts and Mouse Actions

Note On Macintosh platforms, use the Command (⌘) key instead of Ctrl.
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Use keyboard shortcuts and mouse actions to increase productivity while using the Lidar Camera
Calibrator app.

Data Browser

Task Action
Navigate through data pairs in the Accepted
Data or Rejected Data pane

Up or down arrow

Select all data pairs in the data browser Ctrl+A
Select multiple data pairs above or below the
currently selected data pair.

Hold Shift and press the up arrow or down arrow

Select multiple data pairs.

Note Deselecting a selected data pair is not
currently supported using the same shortcut.

Hold Ctrl and click on data pairs

Delete the selected data pair from the data
browser.

• PC: Backspace or Delete
• Mac: delete

A dialog box appears to deletion.
Select the data pairN above the currently
selected data pair. N is the number of data pairs
fully displayed in the data browser at the current
time.

• PC: Page Up
• Mac: Hold Fn and press the up arrow

Select the data pairN below the currently
selected data pair. N is the number of data pairs
fully displayed in the data browser at the current
time.

• PC: Page Down
• Mac: Hold Fn and press the down arrow

Select the first data pair in the data browser. • PC: Home
• Mac: Hold Fn and press the left arrow

Select the last data pair in the data browser. • PC: End
• Mac: Hold Fn and press the right arrow

Error Plots

Use these shortcuts on the error plots to analyze the data. Operations on any of the three error plots
affect the corresponding error bars on all three plots.

Task Action
Select the error bar left of the currently selected
error bar.

Left arrow

Select the error bar right of the currently
selected error bar.

Right arrow

Select the error bar right or left of the currently
selected error bar, in addition to the currently
selected error bar.

Hold Shift and press the left arrow or right
arrow
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Task Action
Select multiple error bars.

Note Deselecting a selected error bar is not
currently supported using the same shortcut.

Hold Ctrl and click error bars

Select all error bars. Ctrl+A
Delete the selected error bar and corresponding
data pair from the data browser. The app then
recalibrates the sensors.

• PC: Backspace or Delete
• Mac: delete

A dialog box appears to confirm deletion.

Edit ROI

Shortcuts to use on the Edit ROI tab.

Task Action
Undo ROI size change.

Note The app stores only the last three sizes of
the ROI, so you cannot undo more than three
times in a row.

Ctrl+Z

Redo ROI size change. Ctrl+Y
Clear ROI selection Esc

Limitations
The Lidar Camera Calibrator app has these limitations:

• The script generated from Export > Generate MATLAB Script does not include any
checkerboard regions manually selected using the Select Checkerboard feature. In the script,
the checkerboard region is detected in the specified ROI.

• After manually selecting checkerboard regions using the Select Checkerboard feature, when you
return to the Calibration tab, you can see the selected points (highlighted in red) only while
viewing the whole point cloud ( when SnapToROI is cleared).

See Also
Lidar Camera Calibrator | estimateCheckerboardCorners3d |
estimateLidarCameraTransform | projectLidarPointsOnImage | fuseCameraToLidar |
bboxCameraToLidar

Related Examples
• “Lidar and Camera Calibration”
• “Read Lidar and Camera Data from Rosbag File”
• “Detect Vehicles in Lidar Using Image Labels”
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More About
• “What Is Lidar-Camera Calibration?”
• “Calibration Guidelines”
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Get Started with Lidar Viewer
The Lidar Viewer app is a tool to visualize, analyze, and process point cloud data. You can also use
this app to preprocess your data for workflows such as labeling, segmentation, and calibration.

To open the app, enter this command in the MATLAB command window.

lidarViewer

Alternatively, you can open the app from the Image Processing and Computer Vision section in
the Apps tab.

Use these steps to load, visualize, analyze, and edit point clouds using the app.

1 “Import, View, and Export Point Cloud”
2 “Visualize Point Cloud Using Color and Camera Views”
3 “Measure Point Cloud”
4 “Edit Point Cloud”

 Get Started with Lidar Viewer
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See Also
Apps
Lidar Viewer | Lidar Labeler

Functions
pcshow | pointCloud | pcdownsample | pcmedian | pcdenoise | pcorganize |
segmentGroundSMRF | pcfitplane | segmentGroundFromLidarData

Objects
pointCloud | lasFileReader

More About
• “Introduction to Lidar Processing”
• “What are Organized and Unorganized Point Clouds?”

See Also

Related Examples
• “Create Custom Preprocessing Workflow with Lidar Viewer”
• “Transform Point Cloud Using Lidar Viewer”
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Getting Started with PointPillars
PointPillars is a method for 3-D object detection using 2-D convolutional layers. PointPillars network
has a learnable encoder that uses PointNets to learn a representation of point clouds organized in
pillars (vertical columns). The network then runs a 2-D convolutional neural network (CNN) to
produce network predictions, decodes the predictions, and generates 3-D bounding boxes for
different object classes such as cars, trucks, and pedestrians.

The PointPillars network has these main stages.

1 Use a feature encoder to convert a point cloud to a sparse pseudoimage.
2 Process the pseudoimage into a high-level representation using a 2-D convolution backbone.
3 Detect and regress 3D bounding boxes using detection heads.

PointPillars Network
A PointPillars network requires two inputs: pillar indices as a P-by-2 and pillar features as a P-by-N-
by-K matrix. P is the number of pillars in the network, N is the number of points per pillar, and K is
the feature dimension.

The network begins with a feature encoder, which is a simplified PointNet. It contains a series of
convolution, batch-norm, and relu layers followed by a max pooling layer. A scatter layer at the end
maps the extracted features into a 2-D space using the pillar indices.

Next, the network has a 2-D CNN backbone that consists of encoder-decoder blocks. Each encoder
block consists of convolution, batch-norm, and relu layers to extract features at different spatial
resolutions. Each decoder block consists of transpose convolution, batch-norm, and relu layers.

The network then concatenates output features at the end of each decoder block, and passes these
features through six detection heads with convolutional and sigmoid layers to predict occupancy,
location, size, angle, heading, and class.
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Create PointPillars Network
You can use the Deep Network Designer app to interactively create a PointPillars deep learning
network. To programmatically create a PointPillars network, use the
pointPillarsObjectDetector object.

Transfer Learning
Reconfigure a pretrained PointPillars network by using the pointPillarsObjectDetector object
to perform transfer learning. Specify the new object classes and the corresponding anchor boxes to
train the network on a new dataset.

Train PointPillars Object Detector and Perform Object Detection
Use the trainPointPillarsObjectDetector function to train a PointPillars network. To perform
object detection on a trained PointPillars network, use the detect function. For more information on
how to train a PointPillars network, see “Lidar 3-D Object Detection Using PointPillars Deep
Learning”.

Code Generation
To learn how to generate CUDA® code for a PointPillars Network, see “Code Generation For Lidar
Object Detection Using PointPillars Deep Learning”.

References
[1] Lang, Alex H., Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom.

“PointPillars: Fast Encoders for Object Detection From Point Cloud” In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 12689–97. Long Beach, CA,
USA: IEEE, 2019. https://doi.org/10.1109/CVPR.2019.01298.
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[2] Hesai and Scale. PandaSet. https://scale.com/open-datasets/pandaset.

See Also
Apps
Deep Network Designer | Lidar Viewer | Lidar Labeler

Objects
pointPillarsObjectDetector

Functions
trainPointPillarsObjectDetector | detect

Related Examples
• “Lidar 3-D Object Detection Using PointPillars Deep Learning”
• “Code Generation For Lidar Object Detection Using PointPillars Deep Learning”
• “Lane Detection in 3-D Lidar Point Cloud”
• “Unorganized to Organized Conversion of Point Clouds Using Spherical Projection”

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Getting Started with Point Clouds Using Deep Learning”
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Getting Started with PointNet++
PointNet++ is a popular neural network used for semantic segmentation of unorganized lidar point
clouds. Semantic segmentation associates each point in a 3-D point cloud with a class label, such as
car, truck, ground, or vegetation.

PointNet++ network partitions the input points into a set of clusters and then extracts the features
using a multi-layer perceptron (MLP) network. The network applies PointNet recursively on the
nested, partitioned inputs to extract multi-scale features for accurate semantic segmentation.

Applications of PointNet++ include:

• Tree segmentation for digital forestry applications.
• Extracting a digital terrain model from aerial lidar data.
• Perception for indoor navigation in robotics.
• 3-D city modelling from aerial lidar data.

PointNet++ Network
The PointNet++ network contains an encoder with set abstraction modules and a decoder with
feature propagation modules.

The set abstraction module processes and extracts a set of points to produce a new set with fewer
elements. Each set abstraction module contains a sampling and grouping layer followed by a mini-
PointNet network.

• The sampling and grouping layer performs sampling by identifying the centroids of local regions.
It then performs grouping by constructing local region sets of the neighboring points around the
centroids.

• The mini-PointNet network contains a shared MLP network with a series of convolution,
normalization, relu layers followed by a max pooling layer. It encodes the local region patterns
into feature vectors.

The feature propagation module interpolates the subsampled points and then concatenates them with
the point features from the set abstraction modules. The network then passes these features through
the unit PointNet network.

The sampling & grouping layer of the set abstraction module and the interpolation layer of the
feature propagation module in this network are implemented using the functionLayer function.

2 Concept Pages

2-36



Create PointNet++ Network
Use the pointnetplusLayers function to create a PointNet++ network for segmenting point cloud
data.

Train PointNet++ Network
To learn how to train a PointNet++ network for segmenting point cloud data, see “Aerial Lidar
Semantic Segmentation Using PointNet++ Deep Learning”.

Code Generation
To learn how to generate CUDA® code for a PointNet++ network, see “Code Generation For Aerial
Lidar Semantic Segmentation Using PointNet++ Deep Learning”.

References
[1] Qi, Charles R., Li Yi, Hao Su, and Leonidas J. Guibas. ‘PointNet++: Deep Hierarchical Feature

Learning on Point Sets in a Metric Space’. ArXiv:1706.02413 [Cs], 7 June 2017. https://
arxiv.org/abs/1706.02413.

[2] Varney, Nina, Vijayan K. Asari, and Quinn Graehling. ‘DALES: A Large-Scale Aerial LiDAR Data
Set for Semantic Segmentation’. ArXiv:2004.11985 [Cs, Stat], 14 April 2020. https://
arxiv.org/abs/2004.11985.

See Also
Apps
Deep Network Designer | Lidar Viewer | Lidar Labeler

Functions
pointnetplusLayers | squeezesegv2Layers | semanticseg | trainNetwork |
evaluateSemanticSegmentation

Related Examples
• “Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning”
• “Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning”
• “Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network”
• “Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network”

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Getting Started with Point Clouds Using Deep Learning”
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Object Detection in Point Clouds Using Deep Learning
3-D object detection has great significance in autonomous navigation, robotics, medicine, remote
sensing, and augmented reality applications. Though point clouds provide rich 3-D information, object
detection in point clouds is a challenging task due to the sparse and unstructured nature of data.

Using deep neural networks to detect objects in a point cloud provides fast and accurate results. A 3-
D object detector network takes point cloud data as an input and produces 3-D bounding boxes
around each detected object.

These are few popular methods of object detection based on the network input.

• Input different point cloud views such as Bird's-eye-view (BEV), front-view, or image view to a
network and regress 3-D bounding boxes. You can also fuse features from different views for more
accurate detections.

• Convert point cloud data into a more structured representation such as pillars or voxels, then
apply a 3-D convolutional neural network to obtain bounding boxes. PointPillars and VoxelNet are
widely popular networks using this method.

• VoxelNet converts the point cloud data into equally spaced voxels and encodes features within
each voxel into a 4-D tensor. Then, obtains the detection results by using a region proposal
network.

• PointPillars network uses PointNets to learn the features of the point cloud organized into
vertical pillars. The network then encodes these features as pseudo images to predict bounding
boxes by using a 2-D object detection pipeline. For more information, see “Getting Started with
PointPillars”.

• Preprocess point cloud data to derive a 2-D representation, use a 2-D CNN to obtain 2-D bounding
boxes. Then, project these 2-D boxes onto the point cloud data to obtain 3-D detection results.

Create Training Data for Object Detection
Training the network on large labeled datasets provides faster and more accurate detection results.

Use the Lidar Labeler app to interactively label point clouds and export label data for training. You
can label cuboids, lines, and voxel regions inside a point clouds using the app. You can also add scene
labels for point classification. For more information, see “Get Started with the Lidar Labeler”.
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Augment and Preprocess Data

Using data augmentation techniques adds variety to the limited datasets. You can transform point
clouds by translating, rotating, and adding new bounding boxes to the point cloud. This provides
distinct point clouds for training. For more details, see “Data Augmentations for Lidar Object
Detection Using Deep Learning”.

To convert unorganized point clouds into organized format, use the pcorganize function. For more
information, see the “Unorganized to Organized Conversion of Point Clouds Using Spherical
Projection” example.

When your network input is 2-D, you can use the ImageDatastore, PixelLabelDatastore, and
boxLabelDatastore objects to divide and store the training and the test data. To store point clouds,
use the fileDatastore object.

For aerial lidar data, use the blockedPointCloudDatastore and blockedPointCloud functions,
respectively to store and process point cloud data as blocks.

For more information, see

• “Preprocess Data for Domain-Specific Deep Learning Applications” (Deep Learning Toolbox)
• “Datastores for Deep Learning” (Deep Learning Toolbox)

Create Object Detection Network
Define your network based on the network input and the layers. For a list of supported layers and
how to create them, see the “List of Deep Learning Layers” (Deep Learning Toolbox). To visualize the
network architecture, use the analyzeNetwork function.

You can also design a network layer-by-layer interactively using the Deep Network Designer.

Use the pointPillarsObjectDetector object, to create a PointPillars object detector network.

Train Object Detector Network
To specify the training options, use the trainingOptions function and you can train the network by
using the trainNetwork function.

Use the trainPointPillarsObjectDetector function to train a PointPillars network.

Detect Objects in Point Clouds Using Deep Learning Detectors and
Pretrained Models
Use the detect function to detect objects using a PointPillars network.

To evaluate the detection results, use the evaluateDetectionAOS and bboxOverlapRatio
functions.

Lidar Toolbox provides these pretrained object detection models for PointPillars and Complex
YOLOv4 networks. For more information, see

• “Lidar 3-D Object Detection Using PointPillars Deep Learning”
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• “Lidar Object Detection Using Complex-YOLO v4 Network”

Code Generation
To learn how to generate CUDA® code for a segmentation workflow, see these examples.

“Code Generation for Lidar Object Detection Using SqueezeSegV2 Network”

“Code Generation For Lidar Object Detection Using PointPillars Deep Learning”

See Also
Apps
Lidar Labeler | Deep Network Designer

Functions
pointPillarsObjectDetector | trainPointPillarsObjectDetector | detect

Objects
fileDatastore | boxLabelDatastore | pixelLabelDatastore |
blockedPointCloudDatastore

See Also

Related Examples
• “Lidar Object Detection Using Complex-YOLO v4 Network”
• “Code Generation for Lidar Object Detection Using SqueezeSegV2 Network”
• “Lidar 3-D Object Detection Using PointPillars Deep Learning”
• “Code Generation For Lidar Object Detection Using PointPillars Deep Learning”

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Getting Started with Point Clouds Using Deep Learning”
• “Getting Started with PointPillars”
• “Semantic Segmentation in Point Clouds Using Deep Learning”
• “Datastores for Deep Learning” (Deep Learning Toolbox)
• “List of Deep Learning Layers” (Deep Learning Toolbox)
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Semantic Segmentation in Point Clouds Using Deep Learning
Segmentation is a fundamental step in processing 3D point clouds. Point cloud semantic
segmentation or classification is a process of associating each point in a point cloud with a semantic
label such as tree, person, road, vehicle, ocean, or building.

Segmentation clusters points with similar characteristics into homogeneous regions. These regions
correspond to specific structures or objects in a point cloud scene.

These are the major approaches for point cloud semantic segmentation.

• Classify each point or a point cluster based on individual features by using feature extraction and
neighborhood selection.

• Extract point statistics and spatial information from the point cloud to classify the points using
statistical and contextual modeling.

Applications for segmentation include urban planning, oceanography, forestry, autonomous driving,
robotics, and navigation.

Deep Learning-Based Segmentation
Deep learning is an efficient approach to point cloud semantic segmentation in which you train a
network to segment and classify points by extracting features from the input data. You cannot apply
standard convolutional neural networks (CNNs) used for image segmentation to raw point clouds due
to the unordered, sparse, and unstructured nature of point cloud data. In most cases, you must
transform raw point clouds before feeding them as an input to a segmentation network.

These are the categories of deep learning segmentation methods, divided by how you format input to
the network.

• Multiview-based methods — Reduce 3-D point clouds to 2-D projected images and process them
directly using 2-D CNNs. After classification you must postprocess the results to restore the 3-D
structure.

• Voxel-based methods — Input point cloud data as voxels and use the standard 3-D CNNs. This
addresses the unordered and unstructured nature of raw point cloud data.

• Point-based methods — Directly apply the deep learning network on individual points.

PointNet is the most popular point-based deep learning framework. This network uses multi-layer
perceptrons (MLP) to extract local features from individual points, then aggregates all local features
into global features using maxpooling. PointNet concatenates the aggregated global and local
features into combined point features, and then extracts new features from the combined point
features by using MLPs. The network predicts semantic labels based on the new features.

PointNet++ is improves on the basic PointNet model by additionally capturing local features
hierarchically. For more information on PointNet++, see “Getting Started with PointNet++”.
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Create Training Data for Semantic Segmentation
Lidar Toolbox provides functions to import and read raw point cloud data from several file formats.
For more information, see “I/O”.

The toolbox enables you to divide this data into training and test data sets, and store them as
datastore objects. For example, you can store point cloud files by using the fileDatastore object.
For more information on datastore objects, see “Datastores for Deep Learning” (Deep Learning
Toolbox).

The “Import Point Cloud Data For Deep Learning” example shows you how to import a large point
cloud data set, and then configure and load a datastore.

Label Data

You need a large, labeled data set to train a deep learning network. If you have an unlabeled data set,
you can use the Lidar Labeler app to label your training data. For information on how to use the
app, see “Get Started with the Lidar Labeler”.

Augment Data

Data augmentation adds variety to the existing training data. The robustness of a network to data
transformations increases when you train it on a data set with a lot of variety.

Augmentation techniques reduce overfitting problems and enable the network to better learn and
infer features.

For more information on how to perform data augmentation on point clouds, see “Data
Augmentations for Lidar Object Detection Using Deep Learning”.

Preprocess Data

You can preprocess your data before training the network. Lidar Toolbox provides function to perform
various preprocessing tasks.

• Denoise, downsample, and filter point clouds.
• Convert unorganized data into the organized format.
• Divide aerial point cloud data into blocks to perform block-by-block processing.

For more information on preprocessing, see “Lidar Processing Applications” (Deep Learning Toolbox).

To interactively visualize, analyze, and preprocess point cloud data, use the Lidar Viewer app. For
more information on how to use the app, see “Get Started with Lidar Viewer”.
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Create Semantic Segmentation Network
Define your network based on the network input and the layers.

Lidar Toolbox provides these function to create segmentation networks.

• pointnetplusLayers — Create PointNet++ segmentation network
• squeezesegv2Layers — Create SqueezeSegV2 segmentation network

You can create a custom network layer-by-layer programmatically. For a list of supported layers and
how to create them, see the “List of Deep Learning Layers” (Deep Learning Toolbox). To visualize the
network architecture, use the analyzeNetwork function.

You can also design a custom network interactively by using the Deep Network Designer.

Train Network
To specify the training options, use the trainingOptions function. You can train the network by
using the trainNetwork function.

Segment Point Clouds and Evaluate Results
Segment Point Cloud

Use the pcsemanticseg and semanticseg functions to obtain the segmentation results.

To segment buildings and vegetation from the aerial lidar data, use the
segmentAerialLidarBuildings and segmentAerialLidarVegetation functions, respectively.

Evaluate Segmentation Results

Evaluate the segmentation results by using the evaluateSemanticSegmentation function.

Use Pretrained Segmentation Models
Lidar Toolbox provides these pretrained semantic segmentation models to perform point cloud
segmentation and classification.

Pretrained Model Description Load Pretrained
Model

Example

PointNet++ PointNet++ is a
hierarchical neural
network that captures
local geometric features
to improve the basic
PointNet model. For
more information, see
“Getting Started with
PointNet++”.

Load the pretrained
model trained on
DALES dataset:

 load("pointnetplusTrained","net")

“Aerial Lidar Semantic
Segmentation Using
PointNet++ Deep
Learning”
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SqueezeSegV2 SqueezeSegV2 is a CNN
for performing end-to-
end semantic
segmentation of an
organized lidar point
cloud. Training this
network requires 2-D
spherical projected
images as inputs to the
network.

Download the
pretrained model
trained on the PandaSet
data set from Hesai and
Scale: https://
www.mathworks.com/
supportfiles/lidar/data/
trainedPointSegNet.mat

“Lidar Point Cloud
Semantic Segmentation
Using SqueezeSegV2
Deep Learning
Network”

PointSeg PointSeg is a CNN for
performing end-to-end
semantic segmentation
of road objects based on
an organized lidar point
cloud. Training this
network requires 2-D
spherical projected
images as inputs to the
network.

Download the
pretrained model
trained on a highway
scene data set from an
Ouster OS1 sensor:
https://
www.mathworks.com/
supportfiles/lidar/data/
trainedPointSegNet.mat

“Lidar Point Cloud
Semantic Segmentation
Using PointSeg Deep
Learning Network”

Code Generation
To learn how to generate CUDA® code for a segmentation workflow, see these examples.

• “Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning”
• “Code Generation for Lidar Point Cloud Segmentation Network”

Note This functionality requires Deep Learning Toolbox™ licence.

See Also
Apps
Lidar Labeler | Deep Network Designer

Functions
pointCloudInputLayer | squeezesegv2Layers | pointnetplusLayers | semanticseg |
evaluateSemanticSegmentation

Objects
fileDatastore | pixelLabelDatastore | blockedPointCloudDatastore

See Also

Related Examples
• “Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning”
• “Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network”
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• “Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network”
• “Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning”
• “Code Generation for Lidar Point Cloud Segmentation Network”

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Getting Started with Point Clouds Using Deep Learning”
• “Getting Started with PointNet++”
• “Datastores for Deep Learning” (Deep Learning Toolbox)
• “List of Deep Learning Layers” (Deep Learning Toolbox)
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Deep Learning with Point Clouds
Lidar sensors record point cloud data that provides rich 3-D geometric information of their
surroundings. You can process this data to get a better understanding of an environment, and use it
for various applications in driving, robotics, medicine, forestry, construction, urban planning, and
oceanography.

Point cloud data is highly unordered and sparse as it stores points in a 3-D space without any
discretion. Additionally, factors such as sensor range, occlusions, and uneven sampling of points also
affect the nature of point cloud data. These factors make point cloud processing a challenging task.

Deep learning addresses various challenges in processing point cloud data. It is easier to perform
complex point cloud processing tasks such as segmentation, detection, and tracking, by training deep
learning networks.

• Segmentation clusters points in a point cloud and assigns class labels such as car, tree, and
building to those clusters.

• Detection identifies and locates objects in a 3-D point cloud scene.
• Tracking tracks the state of objects across different point cloud frames.

These are the common steps for any point cloud processing workflow using deep learning.

Import Data
Lidar Toolbox provides functions to import and read raw point cloud data from several file formats.
For more information, see “I/O”.

The toolbox enables you to divide this data into training and test data sets, and store them as
datastore objects. For example, you can store point cloud files by using the fileDatastore object.
For more information on datastore objects, see “Datastores for Deep Learning” (Deep Learning
Toolbox).

The “Import Point Cloud Data For Deep Learning” example shows you how to import a large point
cloud data set, and then configure and load a datastore.

Augment and Preprocess Data
In this step you prepare training data by labeling, augmenting, and preprocessing it.

Label Data

You need a large, labeled data set to train a deep learning network. If you have an unlabeled data set,
you can use the Lidar Labeler app to label your training data. For information on how to use the
app, see “Get Started with the Lidar Labeler”.

Augment Data

Data augmentation adds variety to the existing training data. The robustness of a network to data
transformations increases when you train it on a data set with a lot of variety.
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Augmentation techniques reduce overfitting problems and enable the network to better learn and
infer features.

For more information on how to perform data augmentation on point clouds, see “Data
Augmentations for Lidar Object Detection Using Deep Learning”.

Preprocess Data

You can preprocess your data before training the network. Lidar Toolbox provides function to perform
various preprocessing tasks.

• Denoise, downsample, and filter point clouds.
• Convert unorganized data into the organized format.
• Divide aerial point cloud data into blocks to perform block-by-block processing.

For more information on preprocessing, see “Lidar Processing Applications” (Deep Learning Toolbox).

To interactively visualize, analyze, and preprocess point cloud data, use the Lidar Viewer app. For
more information on how to use the app, see “Get Started with Lidar Viewer”.

Create Network
Every network has a unique architecture specific to the task you design it for. You define the network
architecture based on the network input and the layers. Most deep learning networks either encode
the point cloud into an image-like format, voxelize the point cloud, or operate directly on individual
points.

Lidar Toolbox provides functions to create deep learning networks, as well as functions to use them
for specific workflows.

• For segmentation workflows, see “Segmentation”.
• For object detection workflows, see “Detection and Tracking”.

To programmatically create a custom network layer-by-layer, use the functions specified in “List of
Deep Learning Layers” (Deep Learning Toolbox). You can also interactively create the network by
using the Deep Network Designer app.

To visualize the network structure, use the analyzeNetwork function.

Train Network
Specify training options by using the trainingOptions function, and train the network by using the
trainNetwork function.

Test and Evaluate Results
Run the trained network on your test data set and evaluate the performance of the network.
Depending on the task, you must use different functions to evaluate the results.

• To evaluate segmentation results, use the evaluateSemanticSegmentation function.
• To evaluate object detection results, use the evaluateDetectionAOS and bboxOverlapRatio

functions.
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Note This functionality requires Deep Learning Toolbox licence.

See Also
Apps
Lidar Labeler | Deep Network Designer

Functions
pointCloudInputLayer | pointnetplusLayers | pointPillarsObjectDetector |
trainPointPillarsObjectDetector

Objects
fileDatastore | pixelLabelDatastore | blockedPointCloudDatastore

See Also

Related Examples
• “Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning”
• “Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning”
• “Lidar 3-D Object Detection Using PointPillars Deep Learning”
• “Code Generation For Lidar Object Detection Using PointPillars Deep Learning”

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Semantic Segmentation in Point Clouds Using Deep Learning”
• “Getting Started with PointNet++”
• “Getting Started with PointPillars”
• “Datastores for Deep Learning” (Deep Learning Toolbox)
• “List of Deep Learning Layers” (Deep Learning Toolbox)
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